
Copyright © 2003 by Brian Marick and Bret Pettichord. All rights reserved.

Ruby Cheat Sheet
This cheat sheet describes Ruby features in roughly the order they'll be presented in
class. It's not a reference to the language. You do have a reference to the language – it's
in ProgrammingRuby-the-book-0.4 on your CD. Click on index.html in that folder, and
you'll find most of the text of Andy Hunt and Dave Thomas's fine book Programming
Ruby.

Variables
Ordinary ("local") variables are created through assignment:

number = 5

Now the variable number has the value 5. Ordinary variables begin with lowercase
letters. After the first character, they can contain any alphabetical or numeric character.
Underscores are helpful for making them readable:

this_is_my_variable = 5

A variable's value is gotten simply by using the name of the variable. The following has
the value 10:

 number + this_is_my_variable

Conditional tests (if)
if number == 5
 puts "Success"
else
 puts "FAILURE"
end

Put the if, else, and end on separate lines as shown. You don't have to indent, but you
should.

Function calls
puts "hello"
puts("hello")

assert_equal(5, number)

A string. Strings can be
surrounded with single or
double quotes.

parentheses can be omitted if not required.
If you're not sure whether they're required,
put them in. To be safe, put them in whenever
the call is at all complicated. Even one as
simple as this.

Ruby Cheat Sheet 2

Function definitions
def assert_equal(expected, actual)
 if expected != actual
 puts "FAILURE!"
 end
end

Functions can return values, and those values can be assigned to variables. The return
value is the last statement in the definition. Here's a simple example:

def five Note that no parentheses are required.
 5
end

variable = five Variable's value is 5. Note that we didn't
need to say five(), as is required in
some languages. You can put in the
parentheses if you prefer.

Here's a little more complicated example:

def make_positive(number)
 if number < 0
 -number
 else
 number
 end
end

variable = make_positive(-5) Variable's value is 5.
variable = make_positive(five) Variable's value is 5.

Very simple regular expressions
Regular expressions are characters surrounded by // or %r{}. A regular expression is
compared to a string like this:

regexp =~ string

Most characters in a regular expression match the same character in a string. So, these all
match:

/a/ =~ 'a string'
/a/ =~ 'string me along'

This also matches:

/as/ =~ 'a string with astounding length'

Ruby Cheat Sheet 3

Notice that the regular expression can match anywhere in the string. If you want it to
match only the beginning of the string, start it with a caret:

 /^as/ =~ 'alas, no match'

If you want it to match at the end, end with a dollar sign:

 /no$/ =~ 'no match, alas'

If you want the regular expression to match any character in a string, use a period:

/^.s/ =~ "As if I didn't know better!"

There are a number of other special characters that let you amazing and wonderful things
with strings. See Programming Ruby.

Truth and falsehood (optional)
Read this only if you noticed that typing regular expression matching at the interpreter
prints odd results.

You'll see that the ones that match print a number. That's the position of the first
character in the match. The first expression (/a/ =~ 'a string') returns 0. (Ruby,
like most programming languages, starts counting with 0.) The second returns 10.

What happens if there's no match? Type this:

 /^as/ =~ 'alas, no match'

and the result will be nil, signifying no match. You can use these results in an if, like
this:

if /^as/ =~ some_string
 puts 'the string begins with "as".'
end

In Ruby, anything but the two special values false and nil are considered true for
purposes of an if statement. So match results like 0 and 10 count as true.

Objects and methods and messages
A function call looks like this:

 start('job')

A method call looks much the same:

 "bookkeeper".include?('book') returns true

The difference is the thing before the period, which is the object to which the message is
sent. That message invokes a method (which is like a def'd function). The method
operates on the object.

Different types of objects respond to different messages. Read on to see two important
types of objects.

Ruby Cheat Sheet 4

Arrays
This is an array with nothing in it:

[]

This is an array with two numbers in it:

[1, 2]

This is an array with two numbers and a string in it. You can put anything into an array.

[1, 'hello!', 220]

Here's how you get something out of an array:

array = [1, 'hello', 220]
array[0] value is 1

Here's how you get the last element out:

array[2] value is 220

Here's another way to get the last element:

array.last value is 220

Here's how you change an element:

array[0]= 'boo!' value printed is 'boo!'
 array is now ['boo', 'hello', 220]

How long is an array?

array.length value is 3

Here's how you tack something onto the end of an array:

array.push('fred') array is now ['boo', 'hello', 220, 'fred']

There are many other wonderful things you can do with an array, like this:

[1, 5, 3, 0].sort value is [0, 1, 3, 5]

a = ["hi", "bret", "p"]
a.sort value is ["bret", "hi", "p"]

Hashes (or dictionaries)
A hash lets you say "Give me the value corresponding to key." You could use a hash to
implement a dictionary: "Give me the definition (value) for the word (key) 'phlogiston'?"
So hashes are sometimes called dictionaries. ("Dictionary" is actually a better name, but
"hash" is the official one.)

Here's how you create a hash:

 hash = {}

Here's how you associate a value with a key:

Ruby Cheat Sheet 5

 hash['bret'] = 'texas' looks a lot like an array, except that the key
 doesn't have to be a number.

Here's how you retrieve a value, given a key:

 hash['bret'] value is 'texas'.

Here's how you know if a hash has a key:

hash.has_key?('bret') value is true.

Here's how you ask how many key/value pairs are in the hash:

 hash.length value is 1

Here's how you ask if a hash is empty:

 hash.empty? value is false.

What values does a hash have?

 hash.values value is the Array ['texas'].

What keys does it have?

 hash.keys value is the Array ['bret'].

Iteration
How can you do something to each element of an array? The following prints each value
of the array on a separate line.

 [1, 2, 3].each do | value |
 puts value
 end

If you prefer, you can use braces instead of do and end:

 [1, 2, 3].each { | value |
 puts value
 }

What if you want to transform each element of an array? The following capitalizes each
element of an array.

["hi", "there"].collect { | value |
 value.capitalize
}

The result is ["Hi", "There"].

This barely scratches the surface of what you can do with iteration in Ruby.

